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Abstract

In this paper, we present a weakened variation of Sup-
port Vector Machines that can be used together with Ad-
aboost. Our modified Support Vector Machine algorithm
has the following interesting properties: First, it is able to
handle distributions over the training data. Second, it is a
weak algorithm in the sense that it ensures an empirical er-
ror upper bounded by 1/2. Third, when used together with
Adaboost, the resulting algorithm is faster than the usual
SVM training algorithm. Finally, we show that our boosted
SVM can be effective as an editing algorithm.

1. Introduction

Adaboost [4] is an algorithm which employs a weak

learner (i.e. an algorithm which returns a hypothesis that is

little better than random guessing) to find a good hypoth-

esis. In this paper, we present a classification algorithm

which uses a variant of Support Vector Machines as the

weak learner for Adaboost. The success of Support Vec-

tor Machines (SVM) in practical classification problems [9]

has been explained from the statistical learning standpoint.

In particular, it has been recently shown that for certain

kernels SVMs are strong learners [11]. This means that

they can achieve generalization error arbitrarily close to the

Bayes error, given a large enough training data set.

Some empirical evidence shows that using a strong

learner as the base classifier for Adaboost is not a good

idea. Wickramaratna, Holden and Buxton apply directly

SVM with Adaboost [12] and observe that the performance

of the boosted classifier degrades as the number of Ad-

aboost rounds increases. Of course, boosting of a strong

learner does not make much sense, from the generalization

error point of view. However, we will see that if the SVM

is forced to output a weaker hypothesis, boosting still may

have some other advantages.

The main drawbacks of the Support Vector Machines

are the time and space complexities of the training algo-

rithm. Usually, the SVM training algorithm solves a large

Quadratic Programming (QP) Problem. Let m denote the

number of training examples. The time complexity of a

QP problem is O(m3). Several researchers have proposed

various methods that improve this time complexity. Some

of these algorithms include: chunking, the decomposition

method and the sequential minimal optimization method

[7]. In practice, these algorithms have a time complexity

that usually scales like O(m2).
Pavlov, Mao and Dom [6] propose a method for speeding

and scaling up the SVM training algorithm using Adaboost.

They implement the SVM training procedure by means of

the Sequential Minimal Optimization algorithm. In order

to simulate the distributions required by Adaboost, they use

bootstrap samples of the original data. In their experiments,

the bootstrap samples size was approximately equal to 2-

4% of the original data set size. In this way, they reduce

substantially the training set in each Adaboost round.

We present a modified version of SVM which has the

following properties: First, it is able to handle distributions

without using bootstrap samples. Second, it is a weak al-

gorithm in the sense that it ensures an empirical error upper

bounded by 1/2. Third, when our algorithm is combined

with Adaboost, the resulting algorithm outputs a hypothesis

that is also a SVM, but which is trained much faster. Fi-

nally, we present empirical evidence that suggests that our

Boosted Support Vector Machines algorithm can be used as

an editing algorithm [1]. Usually, the SVM classification

rule is unnecessarily complex (i.e. The SVM hypothesis

has linearly dependent support vectors). An editing algo-
rithm is a procedure that reduces the training set in order to

simplify the representation of the SVM.

2. Preliminaries

Let (x, y) be a random couple, where x is an instance in a

space X and y ∈ {−1, 1} is a label. Let S = {〈xi, yi〉}m
i=1

be a labeled set, consisting of i.i.d. copies of (x, y).

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05) 
0-7695-2495-8/05 $20.00 © 2005 IEEE 



Algorithm: Adaboost (S, D1, T, Weak)

Input: S = {xi, yi}mi=1, D1, T , Weak(·, ·)
Output: H(·)
for t = 1 to T do

Get a weak hypothesis using Dt.

ht ←Weak(S, Dt).

Choose αt ∈ R

Update the distribution Dt+1.

end

Output: H(x) = sign T
t=1 αtht .

Figure 1: Adaboost Algorithm.

A classification rule, also called a hypothesis, is a func-

tion h : X �→ [−1, 1]. The sign of h(x) is interpreted as

the predicted label to be assigned to instance x, while the

magnitude |h(x)| is interpreted as the “confidence” in this

prediction. The goodness of a hypothesis will be evaluated

using the generalization error R, and the empirical error
Remp.

We say that H(x) is a combined classifier when it is a

convex combination of several hypotheses hi. That is

H(x) =
m∑

i=1

αi · hi(x)

Where αi ≥ 0 and
∑m

i=1 αi = 1. Each hypothesis hi

will be called a base classifier.

2.1. Adaboost

Adaboost, first introduced in [4], is a meta-algorithm

which has the ability to return a strong hypothesis using a

weak algorithm as a subroutine. Figure 1 shows the Ad-

aboost algorithm as presented in [8].

Adaboost takes a labeled examples set S, a discrete dis-

tribution D, and a weak learning algorithm Weak; and re-

turns a combined classifier. At each iteration t, Adaboost

executes Weak over the distribution Dt to get ht, then it

modifies the distribution assigning larger weights to exam-

ples misclassified by ht and smaller weights to examples

with high confidence |ht(x)|.

2.2. Support Vector Machines (SVM)

Our algorithm uses the ν formulation of the SVM prob-

lem. The ν parameter allows us to control the empirical er-

ror of the classifier as we explain below. The optimization

problem in the ν formulation is as follows [10]:

min
w,ξ,ρ

τ(w, ξ, ρ) =
1
2
‖w‖2

H − νρ +
1
m

m∑
i=1

ξi (1)

s.t. yi [〈φ(xi), w〉H + b] ≥ (ρ − ξi), for i=1,. . . ,m

ξi ≥ 0, ρ ≥ 0

Here H is the reproducing kernel Hilbert space of a pos-

itive definite kernel k(·, ·) and φ is a mapping from X to H
such that k(xi, xj) = 〈φ(xi), φ(xj)〉H. Using the kernel

trick, the dual problem becomes:

min
α

W (α) =
1
2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj) (2)

s.t. 0 ≤ αi ≤ 1
m

m∑
i=1

αiyi = 0
m∑

i=1

αi ≥ ν

This optimization problem yields a hypothesis which has

the form:

h(x) = sign

(
m∑

i=1

αiyik(x, xi) + b

)
(3)

The training examples are classified in three categories

depending on the value of αi. Within each category, the

data margins yih(xi) are prescribed by the Karush-Kuhn-

Tucker optimality conditions. The first category consists of

all data points such that αi = 1/m and satisfy yih(xi) < ρ.

These data points are called margin errors or bouncing sup-
port vectors. Note that the set of bouncing vectors in-

cludes all the training examples misclassified by the SVM.

The second category consists of the data points such that

0 < αi < 1/m and satisfy yih(xi) = ρ. They are called

ordinary support vectors. The third category consists of ex-

amples such that αi = 0 and satisfy yih(xi) > ρ. These

examples play no role in the SVM decision function.

3. Boosting Support Vector Machines

In this section, we present a boosting algorithm which

uses SVM as its weak classifier. In order to do that, we

need to solve two issues: we need to modify the support

vector machine optimization problem so it can deal with

distributions, and we need to weaken the performance of

the support vector machine.

3.1. Modified Support Vector Machines

We modify the formulation of the ν-SVM to introduce

the distribution D by multiplying the slack variables ξi by

the corresponding weight Di:
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min
w,ξ,ρ

τ(w, ξ, ρ) =
1
2
‖w‖2

(H) − νρ +
m∑

i=1

Diξi (4)

s.t. yi [〈xi, w〉H + b] ≥ Di(ρ − ξi), for i=1,. . . ,m

ξi ≥ 0, ρ ≥ 0

In this way, we encourage solutions of the optimization

problem that do not err on examples with larger weights.

The dual problem becomes:

min
α

W (α) =
1
2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj) (5)

s.t. 0 ≤ αi ≤ 1
m∑

i=1

αiyi = 0

m∑
i=1

Diαi ≥ ν (6)

We can use several optimization algorithms to solve effi-

ciently this problem. We say that SVk,ν(S, D) is a learning

algorithm that solves the optimization problem (5), and re-

turns a hypothesis hw,b.

The ν parameter in (5), lets us control the empirical error

of the classifier as is explained in the next lemma.

Lemma 1 Let h∗
w,b be a hypothesis returned by

SVk,ν(S, D). If w and b are a feasible point of (4)

with ρ > 0, then Remp(h∗
w,b, S, D) ≤ ν (i.e. The ν

parameter is an upper bound in the empirical error of the
classifier).

Proof By the Karush-Kuhn-Tucker optimality conditions,

ρ greater than zero implies that (6) becomes an equality.

Hence

ν =
m∑

i=1

Diαi ≥
∑

i:αi=1

Di ≥
m∑

i=1

Di�sign(h(xi)) 
= yi�

where the last inequality follows from the fact that all

examples with ξi > 0 satisfy αi = 1 (if not, αi could grow

further to reduce the value of ξi).

�

Then, if we can guarantee that ρ is greater than zero, we

can guarantee that the empirical error is upper bounded by

ν.

We define a special kind of kernels called universal ker-
nels. Let φ be a transformation, and let k be the kernel of

Algorithm: WSV (S, D, k, γ, λ)

Input: S = {〈xi, yi〉}mi=1, D, k, γ, λ
Output: h(·)
begin

Set ν = λ · (1/2− γ).

Set μ = (1− λ) · (1/2− γ).

Select J such that j∈J D(j) ≤ μ, and it has

maximum cardinality.

Set S∗ = {〈xj , yj〉}J′ .

Set D∗ = DJ′ .
end
Output the hypothesis h(·)← SVk,ν(S∗, D∗)

Figure 2: Weakened Support Vector Machine Algorithm.

φ. We say that the kernel k is universal if for any uniquely

labeled data set S = {〈xi, yi〉}m
i=1, the image of S through

φ is linearly separable. When we use an universal kernel in

(5), we can always find a solution with ρ > 0.

Lemma 2 Let k be a universal kernel, and let h∗
w,b be a

hypothesis returned by SVk,ν(S, D), then the empirical
error of h∗

w,b is always upper bounded by ν.

The proof of this lemma follows immediately from

lemma 1 and the universality of the kernel.

3.2. Weakening Support Vector Machines

As mentioned in the introduction, using Adaboost in

combination with Support Vector Machines can be coun-

terproductive. Nevertheless, we claim that using a weak-

ened Support Vector Machine in conjunction with Adaboost

has some advantages over a single SVM trained in the

usual fashion. The usefulness of the method we propose

is twofold. First, it potentially improves the performance

of the Support Vector Machines. Second, it speeds up the

training algorithm.

Our weakened SVM algorithm, that we will refer to as

WSV , takes as inputs a labeled examples set S, a distrib-

ution D, a kernel k, and a “weakness” constant γ. WSV
returns a hypothesis with empirical error upper bounded by

ε = 1
2 −γ. Moreover, it runs faster than the original support

vector machine training algorithm. The basic idea of WSV
is to reject some examples in the training set S, and train

the support vector machine using the remaining examples.

Figure 2 shows the WSV algorithm.

Let J be the index set of the samples that we eliminate,

and let J ′ be the complement of J . Let μ be an upper bound

on the weight of the rejected samples (i.e. μ ≥ ∑
J D(j)).

WSV runs SVk,ν(·, ·) using a modified labeled examples

set with less data. It selects J such that
∑

j∈J D(j) ≤ μ,
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and has maximum cardinality. We can show that this al-

gorithm guarantees an upper bound on the empirical error.

To see this, notice that the allowed error can be split into

two parts. The first part is due to the original algorithm

SVk,ν(S, D), and we can control it using the ν parameter

(see lemma 2). The second part comes from the discarded

portion of the training set. If we assume a worse case sce-

nario in which the hypothesis returned by SV errs on the

whole discarded set, then the empirical error of the algo-

rithm is upper bounded by ν + μ. Now, let λ be a real num-

ber between 0 and 1. If we choose ν = λε and μ = (1−λ)ε,

we can guarantee that the empirical error of WSV is upper

bounded by ε.

Since the time complexity of the training algorithm of

SVM scales as O(m2), the training time of WSV is re-

duced. The number of rejected data depends on two fac-

tors: First, it depends on the distribution over the original

data set. For example, if the distribution is uniform (as is

the case in the first round of Adaboost) the percentage of

points rejected is about 1 − μ. On the other hand, if the

distribution is askew (as in further rounds of Adaboost) the

percentage of discarded points becomes larger. Hence, if

we use WSV as the weak learner, we can execute many

rounds of Adaboost in a small amount of time. The second

factor which affects the number of rejected data is the value

of μ. The larger μ is, the more data is rejected. In the WSV
algorithm, μ can be increased in two ways: decreasing γ, or

decreasing λ.

3.3. Boosting SVM as an Editing Algorithm

During both the training and prediction stages, the per-

formance of a SVM is highly influenced by the number

of support vectors. When a SVM classifier does not have

enough support vectors, it is not able to make predictions

with high accuracy. On the other hand, the more support

vectors, the slower is the prediction. Ideally, the image of

the support vectors in the feature space should be linearly

independent, giving a more compact representation.

There are several methods to reduce the number of sup-

port vectors without degrading the generalization error of a

SVM classifier. Most of these techniques are focused on re-

ducing the number of support vectors after the training pro-

cedure [3]. Since these techniques require to compute the

SVM solution before being applied, they do not improve the

training time. On the other hand, there are methods that se-

lectively reduce the training set before running the training

algorithm [1].

In order to obtain a good SVM classifier with a reduced

training set, the data points in the new training set must look

as if they were drawn from a distribution that has the same

Bayes decision boundary of the original problem, but with

Bayes error equal to zero. So, the idea is to eliminate the

Algorithm: WSVE (S, D, k, γ, ν, μ, σ)

Input: S = {〈xi, yi〉}mi=1, D, k, γ, ν, μ, σ
Output: h(·)
begin

Select J such that j∈J D(j) ≤ σ, and it has

minimum cardinality.

Set S∗ = {〈xj , yj〉}J .

Set D∗ = DJ/ DJ .

h(·)← MWSV (S∗, D∗, k, γ, ν, μ).

end
Output the hypothesis h(·)

Figure 3: Weakened SVM Algorithm for editing.

training examples located on the wrong side of the Bayes

decision boundary.

A priori, we do not know which training examples are

badly placed. We propose to use the distributions generated

by Adaboost to estimate the probability of a point being re-

jected. Adaboost gives high weights to the examples that

are misclassified in various rounds. Hence, the points with

large weights are more likely to be in the wrong side of

the Bayes decision boundary. So, if we reject the exam-

ples with the largest weights, we can use the Boosting SVM

algorithm to perform editing. The Weakened SVM algo-

rithm for editing is shown in Figure 3. This modified al-

gorithm creates a training set which rejects the points with

large weights, then it runs the MWSV algorithm to get an

hypothesis with high accuracy in this modified data set.

4. Experiments

4.1. Boosting SVM

In this section, we report some experiments with the

Boosting SVM algorithm proposed above. We implement

the SVM training algorithm using the sequential minimal

optimization algorithm introduced by Platt [7] and modified

by Chang and Lin [2] for the ν formulation. We modify this

algorithm so we can solve problem 5. This implementation

performs caching of the most frequently used support vec-

tors. Note that if we remove the sign function in (3), then a

combined classifier of SVM is also a SVM. We use this fact

to create a SVM as the output of our Adaboost algorithm

that we refer to as the reduced model. In preliminary exper-

iments, the resulting SVM has a similar decision function,

but it has a number of support vectors that does not increase

with the number of data points in the training set.

We show results for an artificial data set and a real

life data set. The artificial data set is called Fournorm.

This is a twenty dimensional binary classification prob-

lem. Data for the first class is drawn with equal prob-

ability from one of two multivariate normal distributions
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Figure 4. Training time and training error vs.
weight of rejected data (fournorm).

with identity covariance matrix and means (a, a, . . . , a) and

(−a,−a,−a,−a, . . . ,−a), while data for the other class

is drawn with equal probability from one of two multivari-

ate normal distributions with means (a,−a, . . . ,−a) and

(−a, a,−a, a, . . . , a) and identity covariances matrices. We

set a = 2/
√

2. In Figure 4 we plot training time and training

error against the weight of the data that is rejected. Figure

5 shows the generalization error vs. the weight of the data

that is rejected.

For our second set of experimets we utilized the MNIST

data set of handwritten digits [5]. To reduce the classifi-

cation problem to a binary problem, we use only the data

corresponding to the numbers 8 and 3. We use 5000 train-

ing and 1984 test examples, with a polynomial kernel of

degree 3 and ν = 0.1. We set the maximum number of iter-

ations to 10000. The Adaboost algorithm runs 10 iterations

for several values of μ between 0 and 0.9.

Results for both data sets are similar. We can observe

that the training error is a decreasing function of the number

of rounds, regardless of the amount of data that is rejected

(see Figures 4 and 6). This presents an advantage in terms of

the total training time relative to the training time using the

whole data set. It is faster to train some rounds of Adaboost

rejecting a lot of samples than it is to train with the original

data set.For example, for the Fournorm data set, rejecting

58% of the data results in a training error of 1% after 5
rounds of Adaboost but the training time is close to one half

of the training time with the whole data set. For the MNIST

data set, rejecting 50% of the data and after 2 rounds of

Adaboost the training error reaches 0% and the training time

is close to one half of the original training time.

Regarding the generalization error, Figure 7 shows that

for the MNIST data, the test error with rejected data is less

than the test error with the whole data set. After 5 rounds of

Adaboost, rejecting 60% of the data set results in general-

ization error similar to the error with the entire data set with

Figure 5. Generalization error vs. Weight of
rejected data (fournorm)

Figure 6. Training time and training error vs.
weight of rejected data (MNIST).

a dramatically reduced training time.

4.2. Boosting SVM as an Editing Algorithm

For this experiments, we use a simple two dimensional

binary classification problem. The classes are generated

from two uniform distributions in squares of side size one

with centers at c1 and c2 respectively. The position of the

centers allow us to control the Bayes error of the problem.

In these experiments, we set the Bayes error to 10%.

Figure 8 shows that the number of support vectors of our

methods does not increase very much. This fact implies

that our algorithm can be used effectively as an editing al-

gorithms during the training procedure. In addition, our al-

gorithms also reduce the training time as shown in Figure 9.

Furthermore, the empirical errors of the three methods are

similar.

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05) 
0-7695-2495-8/05 $20.00 © 2005 IEEE 



Figure 7. Generalization error vs. Weight of
rejected data (MNIST)

Figure 8. Number of Support Vectors vs.
Training set size

5. Conclusions

Although there exists empirical evidence that boosting

a strong learner may not be a good idea from the general-

ization standpoint, our experiments demonstrate that when

combined with the reduced set method that we propose, it

can lead to some advantages in the running time of the al-

gorithm. Moreover, adaboost is able to identify very effec-

tively the bouncing support vectors in a SVM solution. We

exploit this fact to implement an editing algorithm that pro-

duces classifiers with a more compact representation.

Topics for future research are to investigate a more the-

oretical explanation of the editing capabilities of Adaboost,

and methods of finding optimal values for all the hyperpa-

rameters of our algorithms.
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