
Boosting Support Vector Machines

Elkin García, Fernando Lozano

Departamento de Ingeniería Eléctrica y Electrónica
Universidad de los Andes, Bogotá, Colombia.

{ elkin-ga, flozano } @ uniandes.edu.co

Abstract. This paper presents a classification algorithm based on Sup-
port Vector Machines classifiers combined with Boosting techniques. This
classifier presents a better performance in training time, a similar gener-
alization and a similar model complexity but the model representation
is more compact.

1 Introduction

Support Vector Machines (SVM) have been applied successfully in many prob-
lems in classification and regression [1]. It has been shown recently that for some
of the kernel functions used in practice [2] SVMs are strong learners, in the sense
that they can achieve a generalization error arbitrarily close to the Bayes error
with a sufficiently large training set.

The main disadvantage of using SVMs is that the running time of training
algorithms do not scale well with the size of the training set . If m is the size of the
training set, training an SVM involves solving a quadratic program (QP) of size
m2, which takes O(m3) with a general purposed QP solver. Multiple researchers
have proposed some methods that improve this running time to O(m2) [3,4,5,6].

On the other hand, boosting algorithms like Adaboost [7] find a good hypoth-
esis combining appropriately hypothesis produced by a weak (or base) learner.
Roughly, a weak learner is a learner that returns a hypothesis that outperform
random guessing.

Using a classifier that is already strong (like SVM) as the base learner in
Adaboost does not seem to offer significant advantages in terms of generalization
error. In fact, Wickramaratna, Holden and Buxton have used SVM as the base
classifier of Adaboost and have reported that the performance of the classifier
decreases as the number of rounds increases [8]. However, as we will show below,
a weakened version of SVM can still be useful as a base classifier. As shown
in [9] the size of the weights assigned by Adaboost to the weak SVMs, serve as
an indication of which data points are likely to become support vectors in the
final model, and hence can be useful in the implementation of editing algorithms.

This paper is organized as follows. Section 2 reviews basic concepts of clas-
sification as well as the basics of Boosting algorithms and the SVM algorithm.
In Section 3 we present the new algorithm Boosting Support Vector Machines
(BSVM). Section 4 presents experiments using the new algorithm on real world
data. Finally, section 5 presents the conclusions of this work.

2 Preliminaries

Let X be an input space, Y a space of labels and ∆ a distribution over XxY.
Let S={〈xi, yi〉}m

i=1 be a set of labeled examples where each pair xi, yi is drawn
i.i.d. according to ∆. For a binary classification problem the space of labels is
restricted to Y = {−1,+1}.

A classification rule, also called hypothesis, is a function h : X 7→ Y. The
hypothesis assigns a label to elements of the input space. In the binary classi-
fication problem the hypothesis is h : X 7→ [−1,+1], where the sign of h(x) is
interpreted as the predicted label of x and the magnitude |h(x)| is interpreted
as the “confidence” in this prediction. Let H denote a class of hypothesis.

The performance of the hypothesis is evaluated using the generalization error
R and the empirical error Remp:

R(h) = P(x,y∼∆){sgn(h(x)) 6= y} (1)

Remp(h,S,D) =
m∑

i=1

D(i)Jsign(h(xi)) 6= yiK (2)

Where D ∈ Rm is a discrete distribution over the set S and J·K is the indicator
function.

A learning algorithm is an efficient algorithm that takes as inputs a set S
of labeled examples and a discrete distribution D ∈ Rm over S and returns
a hypothesis h ∈ H. A combined classifier H(x) is a convex combination of
severals hypothesis hi. This is

H(x) =
T∑

i=1

αihi(x) (3)

Where αi ≥ 0 and
∑T

i=1 αi = 1. Each hypothesis hi is a base classifier.

2.1 Boosting

Boosting algorithms improve the performance of a learning algorithm by com-
bining several hypothesis in a proper manner. In particular, the Adaboost algo-
rithm constructs a linear combination of hypothesis that are produced by calling
a weak learner in a succession of rounds. At each iteration t, Adaboost makes
a call to the weak learner Weak with input set S and distribution Dt and re-
turns a hypothesis ht. The distribution Dt is updated so that the weights of the
examples that ht misclassifies are reduced and the weight of the examples that
ht classifies correctly are increased. In this way, in the next iteration the weak
learner is forced to focus its attention in the examples that have been misclas-
sified more often in previous rounds. Figure 1 shows this algorithm as it was
presented in [10].

Algorithm: Adaboost (S, D1, T,Weak)
Input: S = {xi, yi}mi=1, D1, T , Weak(·, ·)
Output: H(·)
for t = 1 to T do

Obtain a weak hypothesis using Dt.
ht ←Weak(S, Dt).
Select αt ∈ R. Usually:

αt =
1

2
ln

(
1−Remp(ht,S, Dt)

Remp(ht,S, Dt)

)
. (4)

Update:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
. (5)

where Zt is a normalization factor so that Dt+1 will be a distribution.
end

Return final hypothesis:

H(x) = sign

(
T∑

t=1

αt∑
t αt

ht(x)

)
. (6)

Fig. 1: Algoritmo Adaboost.

2.2 Support Vector Machines

The aim of Support Vector Machines in the binary classification problem is to
find the optimal separating hyperplane (this is the hyperplane that maximizes
the geometric margin) in a high dimensional feature space X ′. This space is
related to the input space X by a nonlinear transformation Φ(x). The idea of
this transformation is to project the data to a space where it is approximately
separable by a linear threshold function.

When the data is not linearly separable the problem of finding the linear
threshold function with the smallest classification error is NP-Hard [11]. The
idea in SVMs is to allow some of the examples to be misclassified while keeping
a large margin in the remaining data.

Cortes and Vapnik [12, 13] suggest to solve the following optimization prob-
lem. This formulation is known as C−SVM :

min
w∈X ′,ξ∈Rm

b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2

X ′ +
C

m

m∑
i=1

ξi

s.t. yi(〈w, Φ(xi)〉X ′ + b) ≥ 1− ξi

ξi ≥ 0 for i = 1, . . . ,m

(7)

where C > 0 is a constant that controls the “trade-off” between minimizing
the training error and maximizing the margin. A positive slack variable ξi > 0
indicates a classification mistake. It is more convenient to look at this problem
in its dual form:

min
α∈Rm

f(α) =
1
2
αT Qα− eT α

s.t. yT α = 0

0 ≤ αi ≤
C

m
for i = 1, . . . ,m

(8)

where Qij=yiyjk(xi, xj), k(xi, xj)=〈Φ(xi), Φ(xj)〉X ′ is a positive defined ker-
nel and e is a vector of ones. The solution of this problem has the form:

hw,b(x) = sgn

(
m∑

i=1

yiαik(x, xi) + b

)
(9)

Note that in the solution in feature space X ′ the training examples appear
only through the kernel function. Data points for which αi 6= 0, are called support
vectors.

Schölkopf et. al. [14] propose a modification to the optimization problem (8).
Here, the parameter C is replaced by the parameter ν ∈ (0, 1]. This new problem
is known as ν-SVM

min
w∈X ′,ξ∈Rm

ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2

X ′ − νρ +
1
m

m∑
i=1

ξi

s.t. yi(〈w, Φ(xi)〉X ′ + b) ≥ ρ− ξi

ξi ≥ 0 for i = 1, . . . ,m
ρ ≥ 0

(10)

In this optimization problem, a new parameter ρ controls the margin between
the classes. If ξ = 0 then the first restriction of (10) establishes a margin of
2ρ/ ‖w‖. An advantage of this formulation is that ν is an upper bound of the
training error and a lower bound of the number of support vectors if ρ > 0. The
dual problem of (10) is

min
α∈Rm

f(α) =
1
2
αT Qα

s.t. yT α = 0

0 ≤ αi ≤
1
m

for i = 1, . . . ,m

eT α ≥ ν

(11)

Where Qij and e are the same as (8) and the final hypothesis is defined in
(9).

Even for moderate values of m the quadratic programs (8) and (11) are not
easily solvable with generic QP solvers. Several methods have been proposed
instead.Chunking techniques proposed initially by Vapnik [3], are based in two
observations: 1) Removing training examples with αi = 0 do not change the
solution of the QP problem. 2) A decomposition of the original problem (8)
in smaller problems is easier and more efficient. Some of the algorithms based
on these observations are [4, 5]. Platt [6] proposes a technique called Secuential
Minimal Optimization (SMO) where the original problem is chunked in QP
problems of two variables, that have analytical solution.

Problem (11) includes an additional inequality constraint. Crisp and Burges
[15] and Chang and Lin [16] have shown that eT α ≥ ν can be replaced by
eT α = ν without changing the solution, and the techniques described before
can be adapted.

Joachims [5] employs a combination of SMO with shrinking and caching
techniques to solve (8) and (11), that results in a running time that is between
quadratic and cubic ,depending on the peculiarities of the problem. The com-
putational complexity is basically dominated by the number of kernel evalua-
tions [17].

3 Boosting Support Vector Machines

The running time of training algorithms for SVMs can be reduced if only a
few training examples are involved in the actual computations. This fact can be
exploited by Adaboost if at each iteration most of the weight in the distribution
passed to the weak learner is assigned to a few data points.

The computation time can be reduced as follows. If the complexity of the
original training algorithm is bounded by Amx with A ∈ R then training with a
fraction νm is bounded by A(νm)x. Thus, training q hypothesis is bounded by
Aq(νm)x (assuming the overhead introduced by Adaboost is negligible). Then
if x > 1, 0 > ν > 1 and q ≤ 1/ν

Aq(νm)x ≤ A

ν
(νm)x = Aνx−1mx ≤ Amx (12)

The complexity of this algorithm is still O(mx) but the constant is smaller.
For this reason is useful to make a Boosting algorithm similar to Adaboost

using SVM as a weak learner. Then, it is necessary to modify the optimization
problems (8) and (11) in therms of distributions and to guarantee that SVM is
a weak learner.

3.1 Support Vector Machines for distributions

Let D be a discrete distribution over the set of labeled examples S={〈xi, yi〉}m
i=1.

We want to incorporate this information in the optimization problem solved by
C-SVM and ν-SVM.

A simple way of doing this is to use bootstrap samples of the original set drawn
according to D [18]. A serious drawback of this method is that the matrix Q in
(8) and (11) may become ill conditioned because examples with large weight in
the distribution may appear several times in a bootstrap sample.

A better option is to modify the original optimization problem to incorporate
directly the distribution. We present two alternatives of solution. The first al-
ternative is to penalize the slack variables ξi proportional to Di in the objective
function. The optimization problem in C-SVM becomes:

min
w∈X ′,ξ∈Rm

b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2

X ′ +
C

m

m∑
i=1

Diξi

s.t. yi(〈w, Φ(xi)〉X ′ + b) ≥ 1− ξi

ξi ≥ 0 for i = 1, . . . ,m

(13)

And the optimization problem in ν-SVM is:

min
w∈X ′,ξ∈Rm

ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2

X ′ − νρ +
1
m

m∑
i=1

Diξi

s.t. yi(〈w, Φ(xi)〉X ′ + b) ≥ ρ− ξi

ξi ≥ 0 for i = 1, . . . ,m

ρ ≥ 0

(14)

The dual problems of (13) and (14) are respectively

min
α∈Rm

f(α) =
1
2
αT Qα− eT α

s.t. yT α = 0
0 ≤ αi ≤ CDi for i = 1, . . . ,m

(15)

min
α∈Rm

f(α) =
1
2
αT Qα

s.t. yT α = 0
0 ≤ αi ≤ Di for i = 1, . . . ,m

eT α ≥ ν

(16)

The second alternative is to include the distribution in the objetive function
but also force examples with larger weights to have large margin. The modified
C-SVM and ν-SVM formulations are:

min
w∈X ′,ξ∈Rm

b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2

X ′ +
C

m

m∑
i=1

Diξi

s.t. yi(〈w, Φ(xi)〉X ′ + b) ≥ mDi(1− ξi)
ξi ≥ 0 for i = 1, . . . ,m

(17)

min
w∈X ′,ξ∈Rm

ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2

X ′ − νρ +
1
m

m∑
i=1

Diξi

s.t. yi(〈w, Φ(xi)〉X ′ + b) ≥ mDi(ρ− ξi)
ξi ≥ 0 for i = 1, . . . ,m

ρ ≥ 0

(18)

The dual problems of (17) and (18) are respectively:

min
α∈Rm

f(α) =
1
2
αT Qα−mDT α

s.t. yT α = 0

0 ≤ αi ≤
C

m
for i = 1, . . . ,m

(19)

min
α∈Rm

f(α) =
1
2
αT Qα

s.t. yT α = 0

0 ≤ αi ≤
1
m

for i = 1, . . . ,m

mDT α ≥ ν

(20)

Where Qij=yiyjk(xi, xj) and D is the distribution vector.

3.2 Support Vector Machines like a Weak Learner

As mentioned before, a strong learner like SVM does not work well as the base
learner of Adaboost. However, a version of SVM that has been weakened can be
useful.

The idea is to discard a percentage µ of the examples in the original data set,
and solve the optimization problem with a smaller training set. This will work
as long as the training error on the whole data set remains under 50%. Thus,
the idea is to discard the less representative examples in the data set, namely
the examples with small weight under the current distribution. Then, the subset
J ⊆ S is defined by

∑
j∈J Dj ≤ (1 − µ) where J has minimum cardinality.

Algorithm: WSVM(S,D,SV M ,kernel, C or ν, µ)
Input: S = {xi, yi}mi=1, D, SV M(·, ·), kernel, C or ν, µ
Output: h(·)
Select J so that

∑
j∈J Dj ≤ (1− µ) and J has minimum cardinality

Select S∗ = {〈xj , yj〉}J and D∗ = Dj

Obtain a weak hypothesis using D∗

h← SV M(S∗, D∗, kernel, C o ν) =

m∑
i=1

yiβik(x, xi) + b

Fig. 2: Weakened SVM Algorithm.

Notice that as D becomes more askew in later rounds of Adaboost, more and
more data points are discarded, reducing dramatically the training time of the
base SVM learners. The new algorithm is presented in 2.

If we use an universal kernel (a kernel is universal if every set of points in
feature space is separable using this kernel) we can obtains a bound on the
percentage of rejected data µ. This universal kernel is a strong learner with
respect to subset J . Then, we can obtain a classifier that has an error of at most
ε (for small epsilon) and that in the worst case errs on all the elements of J ′ .
Provided that SVM is a weak learner we have that (1− µ)ε + µ < 1/2 where

µ <
1/2− ε

1− ε
(21)

Thus, µ is close to 50%. However the bound is not tight because the elements
of J and J ′ are correlated and hence the classification rule obtained with J
does not have a large error on the set J ′ as long as the number of elements in
J is large enough. For this reason, µ is left as a parameter of the algorithm.
Notice that an appropriate value for this parameter can be determined using
some model selection strategy.

3.3 Boosting Support Vector Machines

The weakened SVM can be incorporated directly into Adaboost, obtaining a
combined classifier of the form:

HT (x) = sgn

(
T∑

i=1

αt∑
t αt

sgn

(
m∑

i=1

yiαik(x, xi) + b

))
(22)

Notice however that 22 is not a hyperplane in feature space and that the
complexity of the hypothesis HT (x) is larger than the complexity of the SVM
in (9).

Algorithm: BSVM (S, D1, T, WSV M, µ, kernel, C or ν)

Input: S = {xi, yi}mi=1, D1, T , WSV M ,µ,kernel,C or ν
Output: H(·)

H(x)←WSV M(S, D1, kernel, C or ν) =

m∑
i=1

yiβ1,ik(x, xi) + b1

for t = 2 to T or stopping condition do

Dt =
Dt−1(i)

(
1−Remp(ht−1,S,Dt−1)

Remp(ht−1,S,Dt−1)

)− 1
2 ytht

Zt−1

Where Zt−1 is a nomalization factor so that Dt will be a distribution.

ht(x)←WSV M(S, Dt, kernel, C or ν) =

m∑
i=1

yiβt,ik(x, xi) + bt

H(x, α) = αht(x) + (1− α)H(x)

Choose αt ∈ [0, 1] so that αt = arg min (Remp (H(α, x),S, D1))

H(x) = H(x, αt)

end

Return final hypothesis: H(x) = sgn (H(x))

Fig. 3: Algorithm BSVM.

For this reason, we modify the Adaboost algorithm shown in figure 1 so that
the combined classifier has the form 9. This new algorithm that we will refer to
as BSVM is detailed on figure 3.

Algorithm BSVM keeps the same general structure of Adaboost. The main
difference is that the final hypothesis is expressed as a hyperplane in feature
space. The computation of the coefficients αt of each hypothesis is also different:
At each iteration, we compute the value of αt that minimizes the training error
over the convex combination of the current hypothesis ht(x) and the combined
hypothesis of the previous iteration H(x). This optimization problem can be
easily solved by numeric methods such as golden search or cubic interpolation.

The stopping condition of BSVM can be set so that the algorithms halts
when it can no longer improve, i.e. when the error of the combined classifier can
not be decreased further. This can be accomplished by stopping when αt ≈ 0 or
when Remp(H(x),S, D1) = 0.

From the generalization point of view it may be better to stop the algorithm
when it starts over fitting the data. This can be done by checking the behavior of
the empirical error on an independent cross validation set. Another alternative is
to look at the slope of the training error and stop the algorithm when it becomes
(approximately) flat. We can compute:

Remp.train[t− 1]−Remp.train[t]
Remp.train[t− 1]

≤ f [t] (23)

where f [t] is non increasing.

4 Experiments

In this section, we present some experiments demonstrating the performance of
our algorithm on synthetic and real world data sets.

The data sets we utilize are the following:

– The MNIST data set of handwritten digits [19]. To restrict the problem to
binary classification, we consider the separation between digits 3 and 8. This
is a relatively difficult task, with high dimensionality and moderately large
number of examples.

– The synthetic data set Four-norm is a binary classification problem in 20
dimensions. In this problem, examples from one class are drawn from one
of two normal distributions with equal probability. The normal distributions
have identity covariance matrix and means (a, a, ..., a) and (−a,−a, ...,−a).
Similarly, examples from the second class are drawn from one of two normal
distributions with equal probability, identity covariance matrix and means
(a,−a, ..., a,−a) and (−a, a, ...,−a, a). In this case we set a =

√
2.

– Data sets Breast cancer, diabetes and australian from the UCI repository.
[20].

For data sets that do not have test examples we set apart 10% of the data
for testing. In all experiments we utilize gaussian kernels k(xi, xj) = exp(−‖xi−
xj‖2/σ). A summary of the data sets and the settings of the parameters of the
gaussian kernel is shown in table 1.

Table 1: Data sets description

Database # Training # Testing Dimension σ

Elements Elements

MNIST 11982 1984 784 4M

Four norm 1000 10000 20 1k

Breast Cancer 615 68 9 100k

Diabetes 692 76 8 40

Australian 621 69 14 10

To train the SVM with distributions (i.e. solve problems (15) and (16)),
we follow a strategy similar to the used by the SMO algorithm [6] and the
improvements suggested by others authors [17,16].

(a) Relation between training error and percentage of rejected
data µ.

(b) Relation between test error and percentage of rejected data
µ.

Fig. 4: Relation between error and percentage of rejected data µ.

Fig. 5: Test error and train time vs µ.

MNIST is used for a general analysis of the algorithm because it has a large
number of examples. Figure 4a shows the training error as a function of the
percentage of rejected data µ. It is clear that the training error can not be
reduced to the original value when more examples are rejected. We show also the
different outcomes obtained by including different stopping condition (described
in section 3.3). We use f [t] = 0.25 and g[t] = 1/t2. Although the training error
does not diminish significantly, figure 4b shows the improved performance of our
algorithm in terms of generalization error, and reduced computation time.

Figure 5 shows the relation between the test error (without over fitting)
and the training time when a percentage of examples is rejected. Although the
generalization of the model with rejected data is similar to the generalization
error of the original model (using all the data), the training time decreases
dramatically almost to 1

10 of original time. As expected, there is a breaking
point where generalization gets worse when a lot of data is rejected.

Regarding the number of support vectors, figure 6 shows that if the percent-
age of rejected examples increases then the number of support vectors decreases
(using the stopping conditions) independently of the training error and the test
error. However, we have observed that if stopping condition are not applied, an
increase in the number of support vectors corresponds to an increase in the gen-
eralization error. This suggest that it is possible to use the number of support
vectors as a stopping criterion.

Table 2 summarizes the results of C-SVM in the different data sets and table
3 summarizes the results of ν-SVM. BSVM obtained a similar generalization
error with respect to the original algorithm in a few rounds. It demonstrates the
performance and rapid convergence of our algorithm. Additionally, the training
time is lower in most cases, in particular with MNIST and australian which are

Fig. 6: Number of Support Vectors vs µ.

Table 2: Results of C-SVM

Database C Test Error µ # Test Error TimeBSVM

SVM (%) Iterations BSVM (%) /TimeSVM

MNIST 10 0.45 0.64 3 0.60 0.0762

Four norm 50 23.50 0.60 4 20.77 0.5212

200 19.68 0.60 4 18.48 0.5617

B. Cancer 100 0.00 0.7 3 0.00 0.9286

Diabetes 50 19.74 0.7 3 22.37 0.3636

Australian 100 18.84 0.7 3 15.94 0.135

Table 3: Results of ν-SVM

Database ν Test Error µ # Test Error TimeBSVM

SVM (%) Iterations BSVM (%) /TimeSVM

MNIST 0.15 4.83 0.60 3 4.54 0.6554

Four norm 0.3 21.05 0.60 4 26.06 0.8532

B. Cancer 0.4 1.47 0.80 3 0.00 1.52

Diabetes 0.2 26.32 0.80 3 26.32 1.13

Australian 0.4 15.94 0.80 3 13.04 0.76

large sets of high dimensionality. Finally, in general, algorithm C-BSVM is more
efficient than ν-BSVM.

Table 4: Number Support Vectors Comparison

Database C # S. Vectors # S. Vectors ν # S. Vectors # S. Vectors
CSVM CBSVM ν SVM ν BSVM

MNIST 10 1417 1012 0.15 1817 1175

Four norm 200 688 454 0.3 340 395

Breast Cancer 100 78 46 0.4 216 58

Diabetes 50 327 147 0.2 121 50

Australian 100 202 104 0.4 245 93

The relation between the number of support vectors is shown in table 4.
BSVM obtains a reduced number of support vectors while maintaining the same
generalization error. There is a large reduction in no separable classes with large
Bayes error, four-norm and diabetes are examples of this reduction.

5 Conclusions

The proposed algorithm BSVM combined efficiently SVM classifiers using Boost-
ing techniques. This new algorithm does not increase the complexity of the final
hypothesis while decreasing the training time specially when the training set is
large or the dimensionality of the data is high.

The models produced by our algorithms are more compact because they have
less support vectors.

The proposed strategies for over fitting are effective because BSVM presents
similar values of generalization with respect to the original implementation.

Problems for future research are finding tighter theoretical bounds on the
percentage of rejected examples and finding more exact stopping conditions.

References

1. Schölkopf, B., Smola, A.: Learning With Kernels. MIT Press, Cambridge, MA
(2002)

2. Steinwart, I.: Sparness of support vector machines –some asymptotically sharp
bounds. In Thrun, S., Saul, L., Schölkopf, B., eds.: Advances in Neural Information
Processing Systems. Volume 16., Cambridge, MA, MIT Press (2004) 169–184

3. Vapnik, V.: Estimation of Dependences Based on Empirical Data [in Russian].
Nauka, Moscow (1979) (English translation: Springer Verlag, New York, 1982).

4. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support
vector machines. In Principe, J., Gile, L., Morgan, N., Wilson, E., eds.: Neural
Networks for Signal Processing VII — Proceedings of the 1997 IEEE Workshop,
New York, IEEE (1997) 276 – 285

5. Joachims, T.: Making large–scale SVM learning practical. In Schölkopf, B., Burges,
C.J.C., Smola, A.J., eds.: Advances in Kernel Methods — Support Vector Learning,
Cambridge, MA, MIT Press (1999) 169–184

6. Platt, J.: Fast training of support vector machines using sequential minimal opti-
mization. In Schölkopf, B., Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel
Methods — Support Vector Learning, Cambridge, MA, MIT Press (1999) 185–208

7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55
(1997) 119–139

8. Wickramaratna, J., Holden, S., Buxton, B.: Performance degradation in boosting.
In Kittler, J., Roli, F., eds.: Proceedings of the 2nd International Workshop on
Multiple Classifier Systems MCS2001. Volume 2096 of LNCS. Springer (2001)
11–21

9. Rangel, P., Lozano, F., García, E.: Boosting of support vector machines with
application to editing. In: Proceedings of the 4nd International Conference of
Machine Learning and Applications ICMLA’05. Springer (2005)

10. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37 (1999) 297–336

11. Johnson, D., Preparata, F.: The densest hemisphere problem. Theorical Computer
Science (1978) 93–107

12. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20 (1995)
273 – 297

13. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998) forthcoming.
14. Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algo-

rithms. NeuroCOLT Technical Report NC-TR-98-031, Royal Holloway College,
University of London, UK (1998)

15. Crisp, D.J., Burges, C.J.C.: A geometric interpretation of ν-svm classifiers. In
Solla, S.A., Leen, T.K., Müller, K.R., eds.: NIPS, The MIT Press (1999) 244–250

16. Chang, C., Lin, C.: Training ν-support vector classifiers: Theory and algorithms.
Neural Computation (2001) 2119–2147

17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

18. Pavlov, D., Mao, J., Dom, D.: Scaling-up support vector machines using boosting
algorithm. 15th International Conference on Pattern Recognition 2 (2000) 219–222

19. LeCun, Y.: (MNIST handwritten digit database) Available as
http://www.research.att.com/∼yann/ocr/mnist/.

20. D.J. Newman, S. Hettich, C.B., Merz, C.: UCI repository of machine learning
databases (1998)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Boosting Support Vector Machines
	Elkin García, Fernando Lozano

