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Abstract—Typical reconfigurable computing systems are based
on an I/O interconnect such as PCle. This yields good bandwidth
performance, but incurs significant overhead for small packet
sizes, and makes the implementation of non-streaming-data ap-
plications unduly difficult. We describe an architecture based on
Intel® QuickPath Interconnect® that addresses these concerns.

Index Terms—Reconfigurable computing, cache coherent, in-
socket FPGA, shared virtual memory

I. INTRODUCTION

A reconfigurable computing (RC) device, such as a Field
Programmable Gate Array (FPGA), is a computing device
whose computing elements and data paths are programmed
dynamically (i.e. after manufacture) to correspond to the
datapaths of an algorithm’s dataflow graph. RC devices
can achieve higher computational and energy -efficiency,
as measured by higher computational throughput, lower
computational latency, or higher computational performance-
per-watt.

Typical RC systems couple a CPU with FPGAs via a
PCle' interconnect to create a loosely coupled heterogeneous
architecture. PCle is designed primarily for high bandwidth;
it incurs high overhead and latency for transferring small
packets. To obtain a performance benefit from a PCle-based
FPGA system, an application must be balanced to minimize
the PCle data transfer overhead. Because of this, most
applications running on such platforms are streaming data-
oriented.

CPU architectures use cache-coherent, low-latency, high
speed fabrics to communicate between CPUs. A cache-
coherent fabric, such as Intel® QuickPath Interconnect
Technology® (Intel QPI®), allows all computing devices in
the system, including RC devices, to share system memory,
intermediated by the fabric’s cache coherence protocol. A
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range of new use-cases is thus enabled, including shared
virtual memory (SVM) and low-latency message transfers.
Intel QPI is designed for efficient cache line transfers, and
so additionally works well for RC applications that require
small payload data transfers.

Programming an RC device requires specialized skills
in Hardware Description Language (HDL) and hardware
debugging, which are not often possessed by systems or
application programmers. The Intel® QuickAssist® QPI-
based FPGA Accelerator Platform (QAP) architecture allows
RC device programming and application programming tasks
to be decoupled from one another in a programmer-friendly
manner.

In the QAP platform, one of the CPU sockets is populated
with a custom FPGA module capable of implementing a full
speed Intel QPI link. Application-specific hardware elements,
called Accelerator Functional Units (AFUs), are implemented
on the module, and used by an application. Section II
provides a brief summary of the Intel QPI architecture and
introduces terms that are used later in the paper. Section III
describes the FPGA module and the hardware architecture
that enables the attachment of AFU(s) to a QPI-based
system. Section IV gives an overview of the Accelerator
Abstraction Layer (AAL). Section VI discusses the use-cases
that drove the system architecture. We end with a discussion
of future work in Section VII and a conclusion in Section VIII.

II. BACKGROUND
A. Intel QuickPath Interconnect

Intel QuickPath Interconnect (Intel QPI) [1] is a high-
speed, cache coherent, packetized, point-to-point interconnect
used in the latest generation of Intel microprocessors. This
high speed link may be used to create a Non-Uniform
Memory Access (NUMA) style system fabric. It has
been acknowledged to be a very high-performing solution
for interconnecting Intel microprocessors [2] [3]. Several
Reliability-Availability-Serviceability (RAS) features, e.g.
implicit Cyclic Redundancy Check (CRC) with link-level
retry and error recovery, fail over modes, are supported



TABLE 1. Glossary of Acronyms

[ Term [ Explanation
AAL Accelerator Abstraction Layer
AAS Accelerator Abstraction Subsystem
AFU Accelerator Functional Unit
AIA Application Interface Adapter

CA Caching Agent: A QPI specification defined agent

CCIL Core-Cache Interface

CRC Cyclic Redundancy Check

CSR Control and Status Register
DDR Double Data Rate

DMA Direct Memory Access

FPGA Field Programmable Gate Array
FSB Front-side Bus

GT/Sec Giga-Transfers per Second

HA Home Agent: A QPI specification defined agent

HDL Hardware Description Language

HLL High-Level Language

MESIF Modified, Exclusive, Shared, Invalid, Forward (cache co-
herency protocol)

NUMA Non-Uniform Memory Access

PCle Peripheral Component Interconnect Express

QAP QPI-based FPGA Accelerator Platform

QLP QPI Link & Protocol Layer (implemented on FPGA)

QPH QPI Physical Layer (implemented on FPGA)

QPI QuickPath Interconnect

RAS Reliability-Availability-Serviceability

RC Reconfigurable Computing

Rx Receive

SPL System Protocol Layer

SVM Shared Virtual Memory

Tx Transmit

WS Workspace

at high speeds ranging from 4.8 to 6.4 Giga-Transfers per
Second (GT/sec).

In a distributed shared memory system, coherent memory
may be distributed across different CPUs/devices on the
platform. Intel QPI implements a cache coherency protocol
that keeps the distributed memory and the caching structures
coherent during system operation. Caching activities are
carried out by two distinct agents, the Caching Agent (CA)
and the Home Agent (HA). A CA initiates transactions to
coherent memory and provides copies of coherent memory
contents to other CAs. At a high level, an Intel QPI CA
must be able to generate Read and Write messages to
coherent system memory. The CA is also responsible for
responding to snoops generated by other Intel QPI agents
in the system. Each piece of coherent memory requires an
HA whose role is to service coherent requests targeted to it
from other CAs in the system. The HA is also responsible
for managing conflicts that may arise among the different CAs.

III. QAP SYSTEM ARCHITECTURE
A. Platform Topology

Figure 1 depicts the Intel QAP Platform topology with 4
CPU sockets. The FPGA module can be placed in any of the
CPU sockets to allow users to build a customized platform
with varying combinations of CPUs and FPGA modules. The
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Fig. 1: Intel QAP Platform Topology
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FPGA module itself can have more than one FPGA device.

The QAP protocol stack can be configured in two different
modes, depending on the requirements of the system being
implemented on the FPGA. When configured as a CA, the
FPGA can initiate cacheable transactions and participate in
the coherence protocol with the memory connected to the
CPU. When configured as an HA, FPGA-connected local
memory is made visible to all CPUs across the platforms.
Figure 2 depicts these two configurations.

Figure 3 depicts the QAP protocol stack implemented
on the FPGA module. The Intel QPI Physical Layer uses
the existing high speed serial I/Os on the FPGA device,
configured to implement the Intel QPI Physical Layer
signaling. The Intel QPI Link Layer provides reliable data
transfer between two end-points using flow control and error
recovery capabilities. The Intel QPI Link & Protocol Layer
participates in the cache coherence protocol with other Intel
QPI agents in the system. The Core-Cache Interface (CCI)
provides direct access to the coherent system memory. The
System Protocol Layer (SPL) implements the initialization,
communication and data movement protocols that exist
between the application and the AFU.

QPI Physical Layer

The QPI Physical Layer (QPH) consists of the actual
wires carrying the signals, as well as the circuitry and
logic required to support data transfer across the link. A
link pair consists of two unidirectional links that operate
simultaneously. The specification defines operation in full,
half, and quarter widths, where full width is 20 bits. Each
link provides one forwarded clock in each direction. The
link is operated at double data rate, running at speeds up to
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4.8 and 6.4 GT/Sec, depending on the CPU implementations
[1]. QPH assembles the data it receives and transfers it
to the FPGA Intel QPI Link layer in units of 8 flits (the
basic layer unit of data transfer), where each flit is 80 bits long.

QPI Link & Protocol Layers

Formally, the Intel QPI Link and Protocol layers are
distinct elements, but our implementation of these elements
is relatively tightly integrated for performance; we henceforth
refer to QPI Link & Protocol layer assembly as the QLP
layer. Although FPGA 1IOs are designed to work in the
GHz range, the programmable fabric and block RAM runs
only in hundreds of MHz. To keep up with the offered
Intel QPI bandwidth, the QLP is architected as a massively
parallel engine that can sink and source 8 flits per clock.
Intricate optimizations have been made in the link layer to
the retry engine, virtual channel support logic and credit
exchange, features that must be regulated at flit granularity.
The implementation details are beyond the scope of this paper.

QLP can be configured as a CA, HA, and Configuration
Agent. It participates in the MESIF [1] coherency protocol
with other Intel QPI agents in the system to implement
a 256KB 4-way set-associative cache in the FPGA. The
behavior of the coherence protocol is configurable via a
cache coherency table, implemented as a case block in RTL.
Features such as cache line pre-fetcher and auto-flush, which
periodically evicts the dirty (Modified state) lines from the
cache, are also provided. As a Configuration Agent, the QLP
implements Intel x86 configuration space, and is capable of
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processing Control & Status Register (CSR) read and write
cycles targeted to the FPGA.

QLP implements the Intel QPI HA message types required
to expose the FPGA connected DRAM as coherent memory
to the rest of the system. HA resolves conflicts in case of
simultaneous access from multiple CAs and sends snoops to
other CAs. To reduce the number of snoops generated by the
HA, QLP implements a snoop filter [1]. This configuration
enables a range of applications that can benefit from the
low latency and high bandwidth of locally attached memory.
Since this memory is part of the coherent system memory, it
is also directly accessible from the CPU. Such a configuration
was previously impossible with PCle-attached devices.

The CCI is designed to match the peak Intel QPI bandwidth.
It accepts a Memory Read Request, a Write Request with
64B data, and an Interrupt Request in the Tx (FPGA-to-CPU)
direction. In the Rx direction, CCI returns a Read Response
with 64B data, a Write Response, CSR Write cycle with
4B data payload and an Unordered message. The Unordered
message is specially crafted to provide very low latency
signaling from CPU to the FPGA device.

A CCI request takes a 32-bit cache line address. The
address is first checked against the cache. If it hits the
cache, then it is completed locally, generating no Intel
QPI transaction (see illustration in Figure 5). If the request
misses the cache, then the address is looked up in a decode
table to determine whether the request must be routed
to the FPGA HA or must be directed to the CPU HA.
A cache hit is orders of magnitude faster than a cache
miss request. Support for posted write requests yields
lower write latency for cache misses. QLP also implements
a store fence, which is a memory barrier across write requests.
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B. QAP Virtual Memory

The use of physically-addressed memory in accelerators
has two drawbacks. Physically-addressed memory accesses
are unprotected from errors and malice. It may be difficult
or impossible to obtain large contiguous blocks of physical
memory, which some applications require. QAP implements
a virtual memory subsystem to avoid the necessity of
physically-addressed memory; the subsystem is implemented
partially in hardware by the SPL and partially in software by
the Accelerator Abstraction Later (AAL).

AAL creates an FPGA page table structure in the system
memory and passes the page table base pointer to the SPL.
This page table is associated with the application, and
does not change during the lifetime of the application. At
initialization, SPL loads the page table entries pointed to
by the page table base pointer. The SPL interface accepts
memory read or write requests with either physical or virtual
addresses, and provides in-order responses.

The above describes the core functionality of SPL. The
next generation of SPL will support dynamic page table
updates and demand paging (such as page faults). This
is a layered architecture that can be extended to provide
slave mode DMA functions, user mode descriptor queues,
scatter-gather operations, and other features.

IV. QAP SOFTWARE ARCHITECTURE

The Accelerator Abstraction Layer (AAL) is the software
subsystem for QAP. It is responsible for two primary
tasks: setting up and managing FPGA virtual memory, and
presenting a programming interface for applications. Figure 6
and Figure 7 depict the overall QAP hardware-software
architecture and the components composing AAL.

In Figure 7, the application uses the AAL subsystem to
perform its function. AAL creates and pins workspaces (WS;
in the figure) from QAP virtual memory. The application may
read and write the workspaces as normal memory, but uses
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Fig. 7: Accelerator Abstraction Layer (AAL) Components and
Interfaces

the AAL APIs to interact with the AFUs.

AAL is implemented partly in kernel mode, in order to
perform operations with a minimum of context switches.
The AAL-provided components are the Acceleration
Abstraction Subsystem (AAS), Resource Manager, AAS
Kernel Subsystem, Application Interface Adaptor (AIA) and
AIA Proxies. They provide services and interfaces to the
user-developed components that comprise the application.
The performance-critical components are implemented in
kernel mode.

A. Virtual Memory Management

The AAS is a persistent process that, upon startup, allocates
and pins physically-addressed memory obtained from the
operating system, and builds FPGA page tables, which are
subsequently used by SPL (see Subsection III-A). AAS
and SPL interact to allow read and write accesses in either
physical or virtual address spaces.

The Resource Manager discovers QAP modules installed
in the host and creates an internal database of the AFUs
deployed in the modules.

B. Programming Interface

An AAL application consists of a top-level program
and one or more AFUs. The top-level program allocates
and configures AFUs. The operations implemented by the
AFU are presented to the top-level program via Application
Interface Adaptor (AIA) components.

An AFU is architected as two components: a Host AFU,
resident on the host CPU, and a Hardware AFU, implemented
in RTL on the QAP module and wrapped by the Host AFU.

The split of the AFU architecture between host and
hardware components allows the Host AFU to present itself



as an object in the object-oriented AAL architecture, while
allowing the Hardware AFU to be accommodated in the QAP
protocol stack. It also helps to accommodate the differing
skill-sets of hardware designers and systems programmers
and algorithm developers. As an AFU is designed, the
Host AFU may initially provide both the interfaces and
the implementation of the operations. The Host AFU may
therefore be used by the top-level program to implement a
working application. As the Hardware AFU is designed, the
Host AFU is modified to use the operations implemented in
the Hardware AFU.

The AFU implementation in software consists of the
Host AFU itself, the AFU Package, and a user-provided
Policy Manager. The AFU Package encapsulates the
hardware configuration knowledge required to instantiate a
Host AFU and configure it properly in the AAL system.
The Policy Manager encapsulates the rules governing access
rights of AAL applications to its underlying hardware module.

V. RELATED WORK

Important tradeoffs between latency and throughput in the
evolution of the common PCI interconnect architecture have
been analyzed in [4]. They point out several drawbacks of
the current trends in the PCI Express interconnect. QPI arises
as a feasible alternative to PCle.

Early studies of the cache coherent interfaces for
accelerators has been introduced in [5] for improving
performance by facilitating burst transfers of whole cache
blocks and reducing control overheads. In addition, it has
been shown that the cache coherence communication cost
in Multi-Processor System-on-Chip (MPSoC) platforms is
reasonable given their advantages over non-coherent systems

[6].

Convey Computer has developed an accelerator system,
described in [7], in which the FPGA module is attached
to the Intel Front-Side Bus (FSB). User-defined instruction
sets known as personalities implemented on the attached
FPGAs, allowing the acceleration of scientific applications.
The Smith-Waterman algorithm for aligning DNA sequences
has been accelerated using this system [8]. Several efforts
are directed at integrating CPUs and reconfigurable resources
in the same device, such as the Xilinx Extensible Processing
Platform [9] that includes an ARM Cortex A9 MPCore'
processor with a small amount of programmable logic and
hardened peripheral IP.

RAMP [10] describes an FPGA-based emulator of parallel
architectures in order to allow hardware-software co-design.
FARM [11] also develops a shared virtual memory-based
FPGA accelerator, but the use-case emphasized there is of a
prototyping platform for exploring various micro-architectural
features. We believe that QAP introduces a wider range

of use-cases, hardware prototyping being one of them.
Additionally, our work presents a software architecture,
Accelerator Abstraction Layer (AAL), which provides
virtualization and abstraction features.

The OpenCL! programming environment [12], and
hence various implementations of OpenCL, provide a
runtime platform with some features described by the AAL
middleware subsystem. However, AAL does not require that
the underlying semantics of the hardware device be those of
OpenCL, and provides a flexible development paradigm for
implementing algorithms on the device.

VI. USAGES

QAP enables a range of new use-cases that take advantage
of the low overhead of small message data transfer and
cache-coherent system memory. Three notable use-cases are:

1) DirectlO: By implementing an Ethernet port directly
onto the QAP module, it may serve both as a low-latency
network device and a low-latency component of an end-to-end
application. This use-case is of interest for high-frequency
trading applications, in which short messages (100-300
bytes) must be received, partially parsed, and then filtered,
forwarded, or otherwise processed with extremely low latency.

2) ASIC Emulation: HW-SW co-design is an essential
means to jump-start software design in parallel with RTL
development. The QAP platform provides a low cost, scalable
module to emulate Intel QPI attached node-controller ASIC,
telecommunications or military accelerators.

3) Zero Buffer Copy: In a traditional IO device SW
architecture, the device driver provides the address of a
pinned kernel buffer to the device. After the device finishes
writing to the kernel buffer, the device driver copies data from
the kernel buffer to the user buffer and provides a pointer
to the user buffer to the application. With the QAP Virtual
Memory Management engine, the user-to-kernel buffer copy
is eliminated. The device driver maps the user buffer to the
device virtual page, so that the device can write directly
into the application’s virtual address space. This saves the
extra cost of a user-to-kernel buffer copy. Applications
of this mechanism include various deep packet inspection
applications and high-frequency trading (HFT) applications.

VII. FUTURE WORK

We are considering a number of research and development
directions for the system architecture described in this paper.
Efforts are currently underway to evaluate QAP thoroughly
for workloads in computational finance (both for pricing
models and for high-frequency trading) and genomics. Future
work will also target applications in seismic imaging.
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We are actively following advances in the areas of rapid
place-and-route and synthesis. The QAP protocol stack can be
incorporated into a design as a black box IP block, enabling a
reduced “time-to-market” productivity benefit to the designer.
This could be vital in areas such as computational finance,
where algorithms have a short life span [13].

We are currently developing an AFU Simulator, to
accelerate debugging and integration of AFU designs in QAP
(see Figure 8). The simulator exposes the AIA (see Figure 7)
on the software side and a transaction-level model of CCI or
SPL on the hardware side. The host application can switch
between a QAP system and the simulator transparently since
the AIA interface is consistent. Similarly the AFU RTL
which transacts with CCI or SPL can be seamlessly migrated
from simulation environment to the FPGA seated on a QAP
system. The AFU Simulator uses the Synopsys VCS' or
Mentor Graphics ModelSim! to implement the transaction
level model. In the AFU Simulator, the QAP stack is not
used, but rather emulated (in a non-cycle accurate manner) in
order to provide uniform interfaces to both the AFU and the
AIA.

Efforts are also underway to integrate the Impulse
CoDeveloper [14] and AutoESL [15] programming
environments with QAP. These are programming environments
that support close dialects of the C programming language,
allowing AFUs to be implemented more rapidly, and by
non-hardware designers. Continued advances in High Level
Language (HLL) technology (i.e. compilation optimized for
area, timing and power, performance improvements, etc.) will
drive wider adoption of QAP.

VIII. CONCLUSION

We have reported on an FPGA accelerator architecture,
QAP, based on the Intel QPI system fabric. The QAP
participates in the Intel QPI protocol and allows applications
to use host system memory and cache to achieve low latency
and high bandwidth with small message sizes. It also supports
a block-oriented protocol to allow more traditional streaming
applications to run with high bandwidth. We have also defined

a software architecture to support applications split between
QAP and host-resident components. Several exciting areas of
research remain to be explored.
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